LCEL的优势
::: 我们建议先阅读LCEL的 入门指南 部分。 :::
LCEL旨在简化使用LLM构建有用应用程序并组合相关组件的过程。它通过提供以下功能来实现这一目标:
- 统一的接口:每个LCEL对象实现
Runnable
接口,该接口定义了一组常见的调用方法(invoke
、batch
、stream
、ainvoke
等)。这使得LCEL对象的链条也能够自动支持批处理和中间步骤的流处理等有用操作,因为每个LCEL对象的链条本身也是一个LCEL对象。 - 组合原语:LCEL提供了一些原语,可以轻松地组合链条、并行化组件、添加容错机制、动态配置链条内部等等。
要更好地理解LCEL的价值,最好是看到它的实际效果,并思考如果没有它,如何重新创建类似的功能。在本教程中,我们将使用入门指南中的基本例子进行演示。我们将使用简单的提示+模型链条,该链条在底层已经定义了许多功能,并观察重新创建所有这些功能所需的步骤。
%pip install --upgrade --quiet langchain-core langchain-openai langchain-anthropic
调用(Invoke)
在最简单的情况下,我们只想传入一个主题字符串,并获得一个笑话字符串:
<ColumnContainer>
<Column>
没有使用LCEL
from typing import List
import openai
prompt_template = "告诉我一个关于{topic}的笑话"
client = openai.OpenAI()
def call_chat_model(messages: List[dict]) -> str:
response = client.chat.completions.create(
model="gpt-3.5-turbo",
messages=messages,
)
return response.choices[0].message.content
def invoke_chain(topic: str) -> str:
prompt_value = prompt_template.format(topic=topic)
messages = [{"role": "user", "content": prompt_value}]
return call_chat_model(messages)
invoke_chain("冰淇淋")
</Column>
<Column>
使用LCEL
from langchain_openai import ChatOpenAI
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
prompt = ChatPromptTemplate.from_template(
"告诉我一个关于{topic}的笑话"
)
output_parser = StrOutputParser()
model = ChatOpenAI(model="gpt-3.5-turbo")
chain = (
{"topic": RunnablePassthrough()}
| prompt
| model
| output_parser
)
chain.invoke("冰淇淋")
</Column>
</ColumnContainer>
流(Stream)
如果我们想要流式传输结果,我们需要更改函数:
<ColumnContainer>
<Column>
没有使用LCEL
from typing import Iterator
def stream_chat_model(messages: List[dict]) -> Iterator[str]:
stream = client.chat.completions.create(
model="gpt-3.5-turbo",
messages=messages,
stream=True,
)
for response in stream:
content = response.choices[0].delta.content
if content is not None:
yield content
def stream_chain(topic: str) -> Iterator[str]:
prompt_value = prompt.format(topic=topic)
return stream_chat_model([{"role": "user", "content": prompt_value}])
for chunk in stream_chain("冰淇淋"):
print(chunk, end="", flush=True)
</Column>
<Column>
使用LCEL
for chunk in chain.stream("冰淇淋"):
print(chunk, end="", flush=True)
</Column>
</ColumnContainer>
批处理(Batch)
如果我们想要并行运行一批输入,我们同样需要一个新的函数:
<ColumnContainer>
<Column>
没有使用LCEL
from concurrent.futures import ThreadPoolExecutor
def batch_chain(topics: list) -> list:
with ThreadPoolExecutor(max_workers=5) as executor:
return list(executor.map(invoke_chain, topics))
batch_chain(["冰淇淋", "意大利面", "饺子"])
</Column>
<Column>
使用LCEL
chain.batch(["冰淇淋", "意大利面", "饺子"])
</Column>
</ColumnContainer>
你翻译完后对原内容进行替换,将结果返回给我。mdx文档是: Advantages of LCEL## 异步
如果我们需要一个异步版本:
<ColumnContainer>
<Column>
没有LCEL
async_client = openai.AsyncOpenAI()
async def acall_chat_model(messages: List[dict]) -> str:
response = await async_client.chat.completions.create(
model="gpt-3.5-turbo",
messages=messages,
)
return response.choices[0].message.content
async def ainvoke_chain(topic: str) -> str:
prompt_value = prompt_template.format(topic=topic)
messages = [{"role": "user", "content": prompt_value}]
return await acall_chat_model(messages)
await ainvoke_chain("冰淇淋")
</Column>
<Column>
LCEL
await chain.ainvoke("冰淇淋")
</Column>
</ColumnContainer>
异步批处理
<ColumnContainer>
<Column>
没有LCEL
import asyncio
import openai
async def abatch_chain(topics: list) -> list:
coros = map(ainvoke_chain, topics)
return await asyncio.gather(*coros)
await abatch_chain(["冰淇淋", "意大利面", "饺子"])
</Column>
<Column>
LCEL
await chain.abatch(["冰淇淋", "意大利面", "饺子"])
</Column>
</ColumnContainer>
LLM而不是聊天模型
如果我们想要使用完成端点而不是聊天端点:
<ColumnContainer>
<Column>
没有LCEL
def call_llm(prompt_value: str) -> str:
response = client.completions.create(
model="gpt-3.5-turbo-instruct",
prompt=prompt_value,
)
return response.choices[0].text
def invoke_llm_chain(topic: str) -> str:
prompt_value = prompt_template.format(topic=topic)
return call_llm(prompt_value)
invoke_llm_chain("冰淇淋")
</Column>
<Column>
LCEL
from langchain_openai import OpenAI
llm = OpenAI(model="gpt-3.5-turbo-instruct")
llm_chain = (
{"topic": RunnablePassthrough()}
| prompt
| llm
| output_parser
)
llm_chain.invoke("冰淇淋")
</Column>
</ColumnContainer>
不同的模型提供者
如果我们想要使用Anthropic而不是OpenAI:
<ColumnContainer>
<Column>
没有LCEL
import anthropic
anthropic_template = f"Human:\n\n{prompt_template}\n\nAssistant:"
anthropic_client = anthropic.Anthropic()
def call_anthropic(prompt_value: str) -> str:
response = anthropic_client.completions.create(
model="claude-2",
prompt=prompt_value,
max_tokens_to_sample=256,
)
return response.completion
def invoke_anthropic_chain(topic: str) -> str:
prompt_value = anthropic_template.format(topic=topic)
return call_anthropic(prompt_value)
invoke_anthropic_chain("冰淇淋")
</Column>
<Column>
LCEL
from langchain_anthropic import ChatAnthropic
anthropic = ChatAnthropic(model="claude-2")
anthropic_chain = (
{"topic": RunnablePassthrough()}
| prompt
| anthropic
| output_parser
)
anthropic_chain.invoke("冰淇淋")
</Column>
</ColumnContainer>
------## 运行时可配置性
如果我们想要在运行时使聊天模型或LLM的选择可配置化:
<ColumnContainer>
<Column>
没有LCEL
def invoke_configurable_chain(
topic: str,
*,
model: str = "chat_openai"
) -> str:
if model == "chat_openai":
return invoke_chain(topic)
elif model == "openai":
return invoke_llm_chain(topic)
elif model == "anthropic":
return invoke_anthropic_chain(topic)
else:
raise ValueError(
f"Received invalid model '{model}'."
" Expected one of chat_openai, openai, anthropic"
)
def stream_configurable_chain(
topic: str,
*,
model: str = "chat_openai"
) -> Iterator[str]:
if model == "chat_openai":
return stream_chain(topic)
elif model == "openai":
# 注意我们还没有实现这个功能。
return stream_llm_chain(topic)
elif model == "anthropic":
# 注意我们还没有实现这个功能。
return stream_anthropic_chain(topic)
else:
raise ValueError(
f"Received invalid model '{model}'."
" Expected one of chat_openai, openai, anthropic"
)
def batch_configurable_chain(
topics: List[str],
*,
model: str = "chat_openai"
) -> List[str]:
# 你懂的
...
async def abatch_configurable_chain(
topics: List[str],
*,
model: str = "chat_openai"
) -> List[str]:
...
invoke_configurable_chain("ice cream", model="openai")
stream = stream_configurable_chain(
"ice_cream",
model="anthropic"
)
for chunk in stream:
print(chunk, end="", flush=True)
# batch_configurable_chain(["ice cream", "spaghetti", "dumplings"])
# await ainvoke_configurable_chain("ice cream")
</Column>
<Column>
有LCEL
from langchain_core.runnables import ConfigurableField
configurable_model = model.configurable_alternatives(
ConfigurableField(id="model"),
default_key="chat_openai",
openai=llm,
anthropic=anthropic,
)
configurable_chain = (
{"topic": RunnablePassthrough()}
| prompt
| configurable_model
| output_parser
)
configurable_chain.invoke(
"ice cream",
config={"model": "openai"}
)
stream = configurable_chain.stream(
"ice cream",
config={"model": "anthropic"}
)
for chunk in stream:
print(chunk, end="", flush=True)
configurable_chain.batch(["ice cream", "spaghetti", "dumplings"])
# await configurable_chain.ainvoke("ice cream")
</Column>
</ColumnContainer>
日志记录
如果我们想要记录我们的中间结果:
<ColumnContainer>
<Column>
没有LCEL
为了说明的目的,我们将print
中间结果
def invoke_anthropic_chain_with_logging(topic: str) -> str:
print(f"输入: {topic}")
prompt_value = anthropic_template.format(topic=topic)
print(f"格式化后的提示: {prompt_value}")
output = call_anthropic(prompt_value)
print(f"输出: {output}")
return output
invoke_anthropic_chain_with_logging("ice cream")
</Column>
<Column>
有LCEL
每个组件都内置了与LangSmith的集成。如果我们设置了以下两个环境变量,所有链路追踪都将记录到LangSmith中。
import os
os.environ["LANGCHAIN_API_KEY"] = "..."
os.environ["LANGCHAIN_TRACING_V2"] = "true"
anthropic_chain.invoke("ice cream")
这是我们的LangSmith追踪的样子:https://smith.langchain.com/public/e4de52f8-bcd9-4732-b950-deee4b04e313/r (opens in a new tab)
</Column>
</ColumnContainer>
备用选择
如果我们想要添加备用逻辑,以防一个模型API失效:
<ColumnContainer>
<Column>
没有LCEL
def invoke_chain_with_fallback(topic: str) -> str:
try:
return invoke_chain(topic)
except Exception:
return invoke_anthropic_chain(topic)
async def ainvoke_chain_with_fallback(topic: str) -> str:
try:
return await ainvoke_chain(topic)
except Exception:
我提供的mdx文档的内容需要翻译,只要翻译md语法中的标题、段落和列表的内容,驼峰和下划线单词不必翻译,请保留md语法标点符号,你翻译完后对原内容进行替换,将结果返回给我。mdx文档是:------
# 注意:我们实际上还没有实现这个。
return await ainvoke_anthropic_chain(topic)
async def batch_chain_with_fallback(topics: List[str]) -> str:
try:
return batch_chain(topics)
except Exception:
# 注意:我们实际上还没有实现这个。
return batch_anthropic_chain(topics)
invoke_chain_with_fallback("ice cream")
# await ainvoke_chain_with_fallback("ice cream")
batch_chain_with_fallback(["ice cream", "spaghetti", "dumplings"]))
</Column>
<Column>
LCEL
fallback_chain = chain.with_fallbacks([anthropic_chain])
fallback_chain.invoke("ice cream")
# await fallback_chain.ainvoke("ice cream")
fallback_chain.batch(["ice cream", "spaghetti", "dumplings"])
</Column>
</ColumnContainer>
完整代码比较
即使在这个简单的例子中,我们的LCEL链将很多功能简洁地集成在一起。随着链变得更加复杂,这变得尤为有价值。
<ColumnContainer>
<Column>
没有LCEL
from concurrent.futures import ThreadPoolExecutor
from typing import Iterator, List, Tuple
import anthropic
import openai
prompt_template = "告诉我一个关于{topic}的笑话"
anthropic_template = f"人类:\n\n{prompt_template}\n\n助手:"
client = openai.OpenAI()
async_client = openai.AsyncOpenAI()
anthropic_client = anthropic.Anthropic()
def call_chat_model(messages: List[dict]) -> str:
response = client.chat.completions.create(
model="gpt-3.5-turbo",
messages=messages,
)
return response.choices[0].message.content
def invoke_chain(topic: str) -> str:
print(f"输入: {topic}")
prompt_value = prompt_template.format(topic=topic)
print(f"格式化的提示语: {prompt_value}")
messages = [{"role": "user", "content": prompt_value}]
output = call_chat_model(messages)
print(f"输出: {output}")
return output
def stream_chat_model(messages: List[dict]) -> Iterator[str]:
stream = client.chat.completions.create(
model="gpt-3.5-turbo",
messages=messages,
stream=True,
)
for response in stream:
content = response.choices[0].delta.content
if content is not None:
yield content
def stream_chain(topic: str) -> Iterator[str]:
print(f"输入: {topic}")
prompt_value = prompt.format(topic=topic)
print(f"格式化的提示语: {prompt_value}")
stream = stream_chat_model([{"role": "user", "content": prompt_value}])
for chunk in stream:
print(f"标记: {chunk}", end="")
yield chunk
def batch_chain(topics: list) -> list:
with ThreadPoolExecutor(max_workers=5) as executor:
return list(executor.map(invoke_chain, topics))
def call_llm(prompt_value: str) -> str:
response = client.completions.create(
model="gpt-3.5-turbo-instruct",
prompt=prompt_value,
)
return response.choices[0].text
def invoke_llm_chain(topic: str) -> str:
print(f"输入: {topic}")
prompt_value = promtp_template.format(topic=topic)
print(f"格式化的提示语: {prompt_value}")
output = call_llm(prompt_value)
print(f"输出: {output}")
return output
def call_anthropic(prompt_value: str) -> str:
response = anthropic_client.completions.create(
model="claude-2",
prompt=prompt_value,
max_tokens_to_sample=256,
)
return response.completion
def invoke_anthropic_chain(topic: str) -> str:
print(f"输入: {topic}")
prompt_value = anthropic_template.format(topic=topic)
print(f"格式化的提示语: {prompt_value}")
output = call_anthropic(prompt_value)
print(f"输出: {output}")
return output
async def ainvoke_anthropic_chain(topic: str) -> str:
...
def stream_anthropic_chain(topic: str) -> Iterator[str]:
...
def batch_anthropic_chain(topics: List[str]) -> List[str]:
...
def invoke_configurable_chain(
topic: str,
*,
model: str = "chat_openai"
) -> str:
if model == "chat_openai":
return invoke_chain(topic)
elif model == "openai":
return invoke_llm_chain(topic)
elif model == "anthropic":
return invoke_anthropic_chain(topic)
else:
raise ValueError(
f"接收到无效的模型'{model}'。"
" 期望chat_openai、openai、anthropic之一。"
)
def stream_configurable_chain(
topic: str,
*,
model: str = "chat_openai"
) -> Iterator[str]:
if model == "chat_openai":
return stream_chain(topic)
elif model == "openai":
# 注意我们还没有实现这个。
return stream_llm_chain(topic)
elif model == "anthropic":
# 注意我们还没有实现这个
return stream_anthropic_chain(topic)
else:
raise ValueError(
f"接收到无效的模型'{model}'。"
" 期望chat_openai、openai、anthropic之一。"
)
def batch_configurable_chain(
topics: List[str],
*,
model: str = "chat_openai"
) -> List[str]:
...
async def abatch_configurable_chain(
topics: List[str],
*,
model: str = "chat_openai"
) -> List[str]:
...
def invoke_chain_with_fallback(topic: str) -> str:
try:
return invoke_chain(topic)
except Exception:
return invoke_anthropic_chain(topic)
async def ainvoke_chain_with_fallback(topic: str) -> str:
try:
return await ainvoke_chain(topic)
except Exception:
return await ainvoke_anthropic_chain(topic)
async def batch_chain_with_fallback(topics: List[str]) -> str:
try:
return batch_chain(topics)
except Exception:
return batch_anthropic_chain(topics)
</Column>
<Column>
你的回答是: #### LCEL
import os
from langchain_anthropic import ChatAnthropic
from langchain_openai import ChatOpenAI
from langchain_openai import OpenAI
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnablePassthrough, ConfigurableField
os.environ["LANGCHAIN_API_KEY"] = "..."
os.environ["LANGCHAIN_TRACING_V2"] = "true"
prompt = ChatPromptTemplate.from_template(
"告诉我一个关于{topic}的短笑话"
)
chat_openai = ChatOpenAI(model="gpt-3.5-turbo")
openai = OpenAI(model="gpt-3.5-turbo-instruct")
anthropic = ChatAnthropic(model="claude-2")
model = (
chat_openai
.with_fallbacks([anthropic])
.configurable_alternatives(
ConfigurableField(id="model"),
default_key="chat_openai",
openai=openai,
anthropic=anthropic,
)
)
chain = (
{"topic": RunnablePassthrough()}
| prompt
| model
| StrOutputParser()
)
</Column>
</ColumnContainer>
下一步骤
要继续学习LCEL,我们建议:
- 阅读完整的LCEL 接口,这里我们只是部分介绍。
- 探索 primitives 以了解LCEL提供了什么。